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Significant progress has been made in recent years in measuring homogeneous
nucleation rates in a variety of liquid�vapor and liquid�solid transitions.
These studies have revealed serious shortcomings of classical nucleation theory.
New theoretical work and simulation studies of simplified model systems have
provided a better understanding of homogeneous nucleation, but many challenges
remain. This article summarizes some recent developments, with an emphasis on
the field-theoretic approach pioneered by Cahn and Hilliard in their study of
nucleation in a two-component incompressible fluid in 1959.
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cal simulation.

1. INTRODUCTION

The kinetic transformation of supercooled matter via homogeneous nuclea-
tion is a topic of fundamental importance in science and technology which
has a long and illustrious history. Gases can be compressed much beyond
their equilibrium pressures without forming liquids. Liquids can be super-
cooled several decades below their freezing temperatures without crys-
tallizing. The reason for such long lived metastable states is that their decay
involves an activated process, which requires the surmounting of a free
energy barrier between the metastable and more stable phase via a
nucleating fluctuation in the form of a critical droplet. Since the free energy
barrier is usually the dominant factor in determining the nucleation rate,
most theoretical work has focused on calculating the critical droplet profile
and its free energy. Because the nucleation rate depends exponentially on
this free energy barrier, theoretical predictions for the barrier height which
differ by small amounts can lead to predictions for nucleation rates which
differ by orders of magnitude. Similarly, measurements of nucleation rates
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are extremely sensitive to experimental conditions such as temperature and
impurities. Although the droplet free energy plays a dominant role in nuclea-
tion, the nucleation rate also includes an important kinetic contribution.

Historically, most studies of the gas to liquid transition measured the
critical supersaturation, the pressure at which the nucleation rate changes
from very small to very large. In recent years, however, experimentalists
have provided a major breakthrough by making direct measurements of
nucleation rates, which have revealed significant inadequacies of classical
nucleation theory. Classical theory typically predicts rates that are too low
at low temperatures and too high at high temperatures.(1) It also predicts
crystal nucleation rates that are too low for liquids and glasses.(2) These
discrepancies have led to a resurgence of theoretical activity and significant
progress in calculating the critical droplet profile and the free energy
barrier to nucleation. In particular, Reiss and colleagues have developed a
more precise characterization of a cluster and its free energy of forma-
tion, (3) while Oxtoby and collaborators have focused on a density func-
tional (field theoretic) approach, (1) using ideas and techniques developed in
the theory of liquids. An important result of this work, as well as that of
Klein and collaborators, (70) is that the properties of the critical nucleating
droplet can be significantly different from those of the bulk stable phase
that eventually develops. This is the case, for example, in crystal nucleation
and in binary vapor�liquid transitions, in which one needs two order
parameters to describe the droplet. In such cases one of these order
parameters can dominate in the formation of the critical droplet, while the
other evolves later on in the phase separation process.

This article summarizes recent developments in homogeneous nuclea-
tion, with the emphasis on the field theoretic approach to nucleation,
which was pioneered by Cahn and Hilliard.(4, 5) It is not meant to be a
comprehensive review of the field, as several excellent articles have recently
appeared.(1, 2, 6�10) Many interesting areas for theoretical, simulation and
experimental study exist, including homogeneous nucleation in systems
more complex than simple fluids, such as polar fluids, colloids and proteins
and the rapid solidification of metallic alloy systems. In addition, more
attention needs to be given to the kinetic prefactor which appears in the
expression for the nucleation rate, as is perhaps necessary, for example, to
understand crystal nucleation at relatively deep undercoatings.(6, 7)

2. CLASSICAL NUCLEATION THEORY

2.1. Capillarity Approximation

Our theoretical understanding of the stability of phases has its origins
in the classic work of Gibbs(11) on metastable and unstable states. Consider
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for simplicity a mean field system with a critical point, such as a liquid�
vapor transition. Imagine cooling the system from the vapor phase below
the critical point into a region of the phase diagram in which thermo-
dynamic equilibrium consists of a coexistence of the liquid and vapor
phases. The vapor phase has to evolve dynamically into the equilibrium
two phase state by fluctuations in the local order parameter (local density).
Gibbs considered the effects of infinitesimal fluctuations on this state,
separating into two categories fluctuations that are infinitesimal in degree
but large in spatial extent (a small fluctuation of the order parameter
extending over a large volume) and those that are large in degree but small
in spatial extent (such as an infinitesimal droplet with the order parameter
having a value close to the more stable phase). If a phase is unstable with
respect to the former fluctuation, there is no barrier to a continuous trans-
formation to the more stable phase; the system undergoes spinodal decom-
position (or spontaneous ordering, depending on the dynamics of the
system). Gibbs showed that this will occur if the initial cooling is to a
region of phase space for which the isothermal compressibility is negative
(the region of mechanical instability in this mean-field picture). The bound-
ary of this unstable region is defined by the locus of points for which the
inverse compressibility is zero��the meanfield spinodal. On the other hand,
the metastable phase is always stable with respect to the formation of
infinitesimal droplets, as long as there is a positive surface tension. Between
this extreme and the other of the bulk stable phase, there is a critical size
droplet, which is in unstable equilibrium. Gibbs calculated the work of
formation of this critical droplet by using thermodynamics arguments
developed for homogeneous systems. Thus, although he recognized that
droplets would in general be spatially inhomogeneous, he treated the
critical droplet as if it were spatially homogeneous up to the boundary
separating it from the metastable background. To do this required a
suitably defined surface energy. In this picture, the work of formation of a
droplet of arbitrary radius R is given as the sum of the gain in the free
energy of the new (stable phase) droplet and the cost in free energy due to
the introduction of the interface:

20=4?R2_&4�3?R3 2F (1)

where _ is the surface tension and 2F is the (positive) bulk free energy
difference per unit volume between the stable and metastable phases. The
above is the capillarity approximation. One obtains the barrier height to
nucleation 20* and the critical droplet size Rc by maximizing 20(R) with
respect to R. This yields the well known results

20*=(16?�3) _3�(2F )2 (2)
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and

Rc=2_�2F (3)

The surface tension _ is taken to be that of a planar interface between the
two coexisting sizable phases. In the case of nucleation of a liquid from a
supercooled vapor, the droplet free energy is usually written as

20*=(16?�3) _3�kT\l ln S)2 (4)

where S=P�Pe is the supersaturation (the ratio of the actual pressure P to
the equilibrium vapor pressure of the liquid at the same temperature) and
\l is the bulk liquid density. In the case of nucleation of a crystal from a
supercooled liquid, the free energy barrier is usually expressed as

20*=(16?�3) _3v2�(2+)2 (5)

where 2+ is the difference in chemical potential between the bulk solid and
bulk liquid and v is the volume per particle in the solid.

The assumptions of the capillarity approximation, namely that the
properties of the new phase at the center of the homogeneous droplet are
the same as the new phase in bulk and that the surface tension of the
curved droplet is the same as that of a planar interface, are in general
incorrect for small critical droplets, such as occur at even moderate under-
coolings. Thus one must go beyond classical theory. (It is also worth
noting that in a strict mean field picture, such as describes certain long
range force models, the lifetime of decay of a metastable state is infinite.)

2.2. Nucleation Rates

As is well known, the classical theory for the nucleation rate J is given by

J=J0 exp&20*�kT (6)

where the preexponential factor J0 depends upon the kinetics of the system
and 20* is given by Eq. (2). Classical nucleation theory is based on a
microscopic description of cluster dynamics, as formulated by Becker and
Daring, Volmer and Weber, Frenkel and others.(12�15) The starting point is
a kinetic equation for the number density of droplets ni (t) of a given size
i at time t. Assuming that such clusters grow or decay by gaining or losing
single molecules, the net rate at which clusters of size i grow is

dni (t)�dt=Ji&1&J i , i�2 (7)
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where Ji is the rate per unit volume at which droplets of size i grow to
droplets of size i+1, given by

Ji=Rini (t)&R$i+1n i+1(t) (8)

The coefficients Ri and R$i are the forward and backward rates at which a
cluster gains or loses particles and must be determined before the model is
fully specified.(10) The nucleation rate is obtained from the steady state
solution, Ji=J, of this equation, which involves a break-up of large
droplets.(80) The classical nucleation theory for the gas�liquid transition is
given by

J0=(2_�?m)1�2 \2
v �\l (9)

where \v is the density of the supersaturated vapor and m is the mass of
monomer molecules.

The classical theory of crystal nucleation from a supercooled liquid is
due to Turnbull and Fisher.(16�18) Their kinetic model assumes that the
molecules have to overcome an activation barrier 2 in jumping from the
liquid to the solid phase, with the jump rate described by a self-diffusion
model, satisfying an Arrhenius rate law. If one includes a Zeldovich correc-
tion(88) omitted in the original work, one can express J0 as

J0=2kT (_�kT )1�2 v&2�3 exp &2�kT (10)

where v is the molecular volume.(16, 2) One can also express this prefactor
in terms of the liquid viscosity(6) or the coefficient of diffusion (using the
Stokes�Einstein relation, modeling the jump rate via as a viscous flow).
A thorough discussion of classical theory is given in a recent review by
Wu.(10)

Actual nucleation rates for nonpolar fluids are in general larger than
predicted by classical theory at low temperatures and smaller than predicted
at high temperatures. Classical theory is qualitatively correct, however, for
nonpolar fluids, in that it predicts nucleation rates that are accurate to
within several orders of magnitude. (In homogeneous nucleation theory
this is not too bad!) However, for strongly polar fluids classical theory is
off by a much larger factor. A review of liquid�vapor nucleation, including
a list of experimental references is given in ref. 8. Classical theory predicts
crystal nucleation rates that are too low for liquids and glasses.(2) A recent
comparison of theory (classical theory, several density functional theories
and a diffuse interace model) and experiments for crystal nucleation is
given in ref. 53. A summary of experimental, theoretical and simulation
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studies of nucleation in liquid�solid and solid�solid transitions for
molecular clusters is given in refs. 6 and 7.

3. CAHN�HILLIARD THEORY

In two classic papers in 1958 and 1959 Cahn and Hilliard(4, 5)

developed a theory for the description of a spatially inhomogeneous
system, via a free energy functional given by

0=| dr[K({\(r))2+ f (\(r))&+\(r)] (11)

where f is the local Helmholtz free energy per unit volume of a
homogeneous system of density \ and the square gradient term represents
the first approximation to a treatment of spatial inhomogeneities. The free
energy f has a double well potential with a relative minimum at the
metastable state and an absolute minimum at the stable phase. An assump-
tion of this square gradient approximation is that the average density
varies slowly on the coarse graining length scale implicit in the model,
which is of the order of atomic distances or larger. A subsequent renor-
malization group theory by Kaski, Binder and Gunton makes this assump-
tion explicit.(78, 79) (For example, the shape of the double well potential and
the location of the spinodal depend on the coarse graining size.) In the
second paper Cahn and Hilliard determined the saddle point of this free
energy functional and analyzed the properties of the critical nucleus for a
two component metastable fluid, which is a central component of nuclea-
tion theory. They found that in the limit of low supersaturation the proper-
ties of this droplet approach those predicted by classical theory, in which
the nucleus is assumed to be homogeneous with an interfacial free energy
that is independent of curvature. More importantly, they found that for
increasing supersaturation, the properties of this critical droplet changed.
In particular, (5) ``(a) The work required for its formation becomes
progressively less than that given by the classical theory, and approaches
continuously to zero at the spinodal. (b) The interface with the exterior
phase becomes more diffuse until eventually no part of the nucleus is even
approximately homogeneous. (c) The concentration at the center of the
nucleus approaches that of the exterior phase. (d) The radius and excess
concentration in the nucleus at first decrease, then pass through a mini-
mum and become infinite again at the spinodal.'' This work has been of
seminal importance in the development of nucleation theory, in that it
provides a description of the spatially inhomogeneous critical droplet, is
not limited to planar interfaces and yields a work of formation which
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vanishes at the mean field spinodal. It is the first of a series of density func-
tional theories of nucleation which were refined and generalized much later.
In what follows, we summarize some of these more recent developments.

4. FIELD THEORETIC NUCLEATION THEORY

The Cahn�Hilliard theory provides a useful starting point for a
description of the critical droplet and nucleation barrier. However, a full
nucleation theory requires a dynamical description, which Langer subse-
quently formulated in a continuum generalization of classical nucleation
theory.(46) In this approach one starts with an appropriate Fokker�Planck
(or corresponding Langevin) equation for the probability distribution func-
tional P([�i], t) for the set of semi-macroscopic variables [�i] which are
the relevant ``slow'' variables of the system:

�P��t=&:
i

$Ji �$�i (12)

where the probability current Ji is given by

Ji=:
j

Mij ($0�$� j+kT $P�$� j) (13)

The summation above stands for an integration over the spatial variable r
and a sum over the semi-macroscopic variables. For a pure fluid, these
variables are the hydrodynamic modes, which include viscous, thermal
diffusion and sound wave modes. The matrix Mij consists of a symmetric
and an antisymmetric piece. The symmetric part corresponds to a set of
generalized Onsager coefficients and the antisymmetric part corresponds to
any nondissipative terms.

The decay of a metastable state corresponds to passing from a local
minimum of 0 to another minimum of lower free energy, which involves
improbable free energy fluctuations. The most likely path for this transition
to occur when the nucleation barrier is high is via the saddle point, which
corresponds to a critical droplet of the stable phase in a metastable back-
ground. The nucleation rate is given by a steady state solution of the
Fokker�Planck equation which describes a finite probability current across
the saddle point. The formal solution of this steady state current can be
expressed as

J=}00 exp &20 V �kT (14)
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where } is a dynamical prefactor and 00 is a statistical prefactor. The
dynamical prefactor is the initial growth rate of a critical droplet, while the
statistical prefactor essentially is the amount of phase space available for a
fluctuation corresponding to a critical droplet.

One way to calculate } is to linearize the Langevin equations corre-
sponding to the Fokker�Planck equation around the (unstable) saddle
point. There are a few cases in which this has been done.(80) One of the
simpler cases corresponds to diffusion in a binary system, such as a binary
alloy or binary fluid. In this case the formal analysis has been given in
refs. 47 and 49. An equivalent, heuristic formulation has been given in
ref. 48, based on a solution of the quasistationary diffusion equation,
{2c=0, for the concentration field c in the neighborhood of a spherical
droplet of radius R. This leads to an equation for the growth rate of the
droplet:

dR�dt=(D $c�R 2c)(1&Rc �R) (15)

where $c is the supersaturation, D is the diffusion constant and 2c is the
binary fluid miscibility gap.(80) If one linearizes this equation around the
critical droplet size Rc , one obtains for the growth rate

|}|=D $c�R2
c 2c (16)

A similar derivation can be made to obtain } for the case of a droplet of
liquid in a supercooled vapor, (47, 49, 80) based on the assumption that the
growth rate is determined by the rate at which the latent heat produced in
the formation of the droplet of the nucleating phase can be dissipated. The
result is

}=2*_T�l 2\lR3
c (17)

Grant and Gunton (83) have used the Langer formalism to calculate the
nucleation rate for crystal nucleation. Their theory is probably most
applicable to alkali metals, but it has been applied to a variety of other
systems.(6, 7) The basic assumption of their calculation is that the critical
droplet grows via the thermal conduction of latent heat. (A similar
mechanism is involved in the theory of dendritic growth from supercooled
liquids.) The equation of motion for a crystalline droplet of radius R is
found to be

dR�dt=(2*_T�l 2\2
l (1+')2 R)(1�R&1�Rc) (18)
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where * is the thermal conductivity, l is the latent heat of fusion, ' is the
fractional density change upon heating and Rc is the classical critical
droplet size. Linearizing this equation about Rc yields for the growth rate

}=2*_T�l 2\2
l (1+')2 R3

c (19)

This is to be contrasted with the classical Turnbull�Fisher expression
in Eq. (10), in which the diffusion is expressed in terms of an activation
energy. The underlying assumption of the classical theory seems to be that
the latent heat is transported away before the critical droplet is formed, in
contrast to the assumption above. Bartell has compared his experimental
and simulation results for several molecular systems at deep undercoolings
with both the classical theory and with the Grant�Gunton theory. It would
appear that neither can explain the observed nucleation rates; for example,
the Grant�Gunton theory apparently differs by several orders of magnitude
from the experimental results (see refs. 6, 7, and 19 for a discussion of this).
However, in addition to the complexity of the systems studied, at such deep
undercoolings the critical droplet is quite small, so that it might be beyond
the range of validity of these theories. In addition, the lack of knowledge
of the surface tension makes comparison of experiment and theory difficult,
as noted earlier. Skripov has also measured the nucleation rate for several
metals and nonmetals and found that each seems to exhibit a maximum as
a function of temperature, in at least qualitative agreement with the classi-
cal theory of nucleation.(21, 22) It would clearly be useful to have a more
complete theory of crystal nucleation from the melt, particularly at deep
undercoolings, including the dynamical prefactor.

Langer's original theory was developed for quenches near the coexis-
tence curve, in which the nucleation barrier is large (strong first order
transition). However, as Cahn and Hilliard had shown, this barrier
vanishes at the mean field spinodal. Klein and collaborators subsequently
extended Langer's theory to the case of nucleation near this spinodal, in
the limit of a long range force model, for both gas�liquid(68, 69) and liquid�
solid(70) nucleation. A summary of their results for crystal nucleation is
given below.

5. DENSITY FUNCTIONAL APPROACH

The density functional theory of nucleation by Oxtoby and collabo-
rators is a systematic theory of nucleation which has been applied to
several different models for liquid�vapor and liquid�solid nucleation.
The nucleation barrier is calculated by finding a saddle point and corre-
sponding critical droplet profile for a given system. Nucleation rates are
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typically calculated by combining the critical droplet free energy with the
preexponential factor from classical nucleation theory, rather than by
carrying out a full dynamical calculation ala Langer. (See, however, refs. 83
and 40.) The main difference with the Langer approach lies in the use of
liquid�state perturbation theory to calculate the free energy functional. The
interactions between the molecules are typically taken to be Lennard�Jones
forces, which are then approximated as hard sphere interactions plus
attractive tails. The free energy of the hard sphere system, fhs , is treated in
local density approximation, while the spherically symmetric attractive
interaction, V, is treated by perturbation theory. The free energy functional
for such a system is

0[\(r)]=| dr fhs(\(r))+|| dr dr$ V( |r&r$| ) \(r) \(r$)) (20)

As before, the saddle point is obtained by setting $0�$\(r) equal to
zero, which yields a nonlinear integral equation for \(r). This equation is
solved by iteration, yielding the profile of the critical droplet and the
corresponding work of formation, 20*. The steady state nucleation rate is
then given by Eq. (6), with the appropriate classical preexponential factor.

5.1. Liquid�Vapor Nucleation

A variety of density functional calculations have been carried out by
Oxtoby and collaborators for nucleation of the supercooled vapor. Some of
the important conclusions include the following:

v The breakdown of classical theory was studied within the context of
a Yukawa potential by Oxtoby and Evans.(32) They found that as the range
of this attractive tail was increased, the agreement between density func-
tional and classical theory disappeared, with discrepancies of many orders
of magnitude developing between the corresponding theoretically predicted
nucleation rates. They concluded that the qualitative agreement between
the classical nucleation theory and experimental results for the magnitude
of the nucleation rate is somewhat fortuitous. Namely, if physical systems
had somewhat longer attractive potentials, classical theory would be in
gross error.

v Zeng and Oxtoby(34) analyzed a Lennard�Jones potential with a
temperature dependent diameter for the hard sphere potential. This model
presumably describes simple substances such as the noble gases. Unfor-
tunately, accurate experimental data is not available for such systems.
However, they found qualitative agreement with the temperature and
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supersaturation dependence for the nucleation rate found in several
experimental studies of alcohols, toluene and alkanes.(45, 43, 44) Although
spherically symmetric potentials such as the Lennard�Jones type are not
accurate descriptions of these systems, the qualitative agreement is
nevertheless encouraging.

v Talanquer and Oxtoby(40) carried out a more complete density func-
tional calculation, extending earlier work(34, 32) to include a calculation of
the prefactor Jo that occurs in the expression for the nucleation rate. The
earlier calculations had assumed that this prefactor was given by classical
nucleation theory. By calculating the forward and backward rates that
occur in the cluster dynamics model described in Section II, they found
results that were not much different than those obtained in, (34, 32) but dif-
fered from classical nucleation theory. Classical nucleation theory over-
estimates the nucleation rate at small supersaturation by considering
incompressible liquid droplets, whereas it underestimates the rate at large
supersaturation via an overestimate of the surface tension of small droplets.

v As noted in the preceding section, Langer and Turski(47) carried out
a calculation of the preexponential factor Jo near the critical point, using
the full hydrodynamic equations appropriate to the fluid. In spite of being
a more complete theory, their results did not differ significantly from the
Becker�Do� ring theory, as modified to include modern scaling laws and
critical exponents.

5.2. Crystal Nucleation

The nucleation of crystals from a supercooled liquid is much less well
understood than the gas�liquid transition, due in large part to the broken
symmetry of the liquid�solid transition. In addition, it is extremely difficult
to measure the interfacial free energy that occurs in the expression for J.
This interfacial free energy can only be measured at the melting tem-
perature and even there it is only known within rather limited accuracy.(53)

Since many of the nucleation experiments are at moderate to deep under-
coolings, one can only estimate the interfacial free energies at such tem-
peratures. Thus in contrast to the relatively straightforward measurements
of _ for liquids, which allow one to make direct tests of classical nucleation
theory, it is in general not possible to carry out such tests for crystal
nucleation. However, various indirect tests have been carried out. A com-
parison of a variety of experimental results with several theories for crystal
nucleation is given in ref. 53.

In the liquid�gas transition the critical droplet is described by a local
density \(r). However, in the liquid�solid transition the crystalline droplet
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has both a local density and a local periodic structure. The spatial varia-
tion of these two variables need not be the same. For example, changes in
density occur after the crystalline structure appears for liquids whose
molecules are small, whereas in colloids and proteins one can have the
density change occurring first, followed by the development of a periodic
structure in the droplet.(36) Such effects can play a significant role in
nucleation and in particular invalidate classical nucleation theory.

Density functional theory treats the solid as an inhomogeneous fluid.
The starting point for a calculation of crystal nucleation rates is a Fourier
expansion of \(r) in terms of the reciprocal lattice vectors ki ,

\(r)=\o+\s : mi exp ik i } r (21)

where \o is the average density, \s is the average density of the solid and
the Fourier coefficients are structural order parameters that determine the
crystal structure. Since the mi would be zero in the liquid, one models the
nucleation process by letting the mi 's be spatially dependent. The saddle
point is found as usual by minimizing the grand canonical potential func-
tional 0 with respect to \(r). Different truncations of the above expansion
have been made, in order to facilitate actual calculations, with the crystal
symmetry usually assumed known. One approximation that has been made
is to write the density as a sum of Gaussians, centered about the lattice
sites of the crystal. All of the mi 's are then determined in terms of the first
one, m1 . The Gaussian approximation then yields two ordinary differential
equations for the average density \o(r) and the structural order parameter
m1(r):

$0�$\o(r)=0 (22)

$0�$m1(r)=0 (23)

One then solves these equations for a system of Lennard�Jones atoms,
for example, using a free energy functional of the type discussed above and
assuming a fcc crystal symmetry. Some interesting results include the
following:

v Shen and Oxtoby(38) found that the critical droplet is different at
large undercoolings from that at large superheating due to the absence of
a spinodal in their solid free energy functional. In addition, they found that
the classical theory for the free energy of formation of the critical droplet
is found to exceed that obtained in the density functional calculation.

v In an interesting extension of this work, (39) the same authors intro-
duced an order parameter that continuously distorts a crystal with fcc
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symmetry into one with bcc symmetry, to allow for the possibility that
precritical bee crystallites form which then transform to critical fcc droplets.
The latter had been found in a earlier simulation of a Lennard�Jones
system.(65) Their calculation of the free energy functional showed a
metastable bcc state close to the stable fee phase. This metastable bee phase
induces a saddle point which serves as the lowest free energy barrier
between the liquid and crystal, with the minimum free energy interface
passing close to this saddle point. This has significant consequences for
nucleation, in that a small critical droplet is largely of bcc structure at the
center and evolves into the stable fcc structure as it grows. It is interesting
that this precursor bcc structure was also predicted earlier(70) in a theoretical
study of spinodals in crystal nucleation, as discussed next.

v One issue that is still under discussion is whether there is a spinodal
in crystal nucleation, which should manifest itself in a divergence in the
structure factor at a nonzero wave vector. (The idea that there might be an
instability in the freezing transition dates back to theoretical work by
Kirkwood and Monroe.(58)) There is no experimental evidence for such
a divergence, however. In addition, current density functional calculations
of crystal nucleation(38) support these experimental observations. On the
other hand, theoretical work by Klein and Levraz(70) suggests that one
should expect to see effects of a spinodal in crystal nucleation, although
these might be somewhat subtle. These authors base their arguments on an
analysis of a system interacting with weak, long-range repulsive potentials.
(In the limit of an infinitely weak, but infinitely long-ranged potential this
model has a mean-field spinodal.) The authors calculate the critical droplet
profile and show that near the spinodal it is a small amplitude fluctuation
with a bcc symmetry (in three dimensions). The instability associated with
the spinodal is characterized by a structure factor that diverges at a non-
zero wave vector. In addition, the droplet with crystalline symmetry
appears with no initial latent heat release. The nucleation barrier near the
spinodal differs from what one would obtain in classical theory, which is
based on the assumption of a finite surface tension. In contrast, the surface
tension vanishes as one approaches the spinodal. Klein and Levraz suggest
that crystalline nucleation in deeply quenched liquids with finite-range
forces might be similar to that found for the weak, long-range force models,
although they cannot explain the apparent lack of a divergence in the
structure factor in experiments. Finally, as noted earlier, Klein and
collaborators have discussed the nucleation mechanism to be found in
deeply supercooled vapors and in Ising models, within the framework of a
fractal or ramified droplet picture analogous to that summarized here for
crystal nucleation.(68, 69, 71�73) An interesting discussion of how nucleation

915Homogeneous Nucleation



clusters arise from the coalescence of critical phenomena fluctuations
associated with a mean field spinodal is given in ref. 76.

6. DIFFUSE INTERFACE MODEL

Although the density functional approach provides, in principle,
a systematic approach to the calculation of nucleation rates, it requires an
accurate intermolecular potential to describe real materials. In addition the
square gradient approximation which occurs in several applications of the
density functional approach has been criticized as being an inaccurate
description of the interface in certain instances. As a consequence other
more phenomenological approaches have been developed which try to
improve the capillarity approximation which is clearly incorrect for small
droplets. For typical nuclei which contain a few tens to a few hundred
molecules, the nuclei are dominated by their interfaces. This suggests a
size-dependent surface tension, for which there are many theories (see,
e.g., ref. 30). One particular approach to calculate the work of formation is
the so-called diffuse interface model developed by Granasy and colla-
borators.(56, 54, 55, 52) (A similar theory has been proposed by Spaepen.(30, 31))
This model assumes that the center of the droplet can be characterized by
the physical properties of the bulk and that a ``diffuse interface'' thickness
is size independent. Specifically, the work of formation of the droplet is
written formally as

20=| dr[2h(r)&T 2s(r)] (24)

where 2h and 2s describe the local enthalpy and entropy densities of the
droplet. One then writes this as

20=(4?�3)(R3
H 2hc&R3

S 2sc) (25)

where RH and RS denote the positions of the ``enthalpy'' and ``entropy''
surfaces, respectively, and 2hc=2h(0) and 2sc=2s(0). One assumes that
RS&RH is independent of the droplet size and undercooling and is equal
to its melting point value $=&_f�2hf . (The physical significance of this
length seems unclear.) The free energy of the critical droplet can then be
calculated and used together with the classical preexponential factor in
Eq. (6) to obtain the nucleation rate. It has been shown that this model is
consistent with the experimental data on crystal nucleation in molten metals,
oxide glasses and hydrocarbons, (53, 50, 51) as is a semiempirical single order
parameter Cahn�Hilliard model.(35, 53)
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7. NUMERICAL SIMULATIONS

Numerical simulations of microscopic models of interacting molecules
have become a powerful tool for the study of homogeneous nucleation. The
two common methods are Monte Carlo and molecular dynamics (MD),
with the latter being increasingly used to study the kinetics of first order
phase transitions. Another fruitful approach has been the simulation of
nonlinear Langevin equations, which appear in the field theoretic
approach. We summarize a few highlights of such simulations, focusing
primarily on MD studies.

v MD studies of crystal nucleation from the melt have been carried
out using simple isotropic potentials such as Lennard�Jones.(64, 74, 75, 65)

Earlier simulation studies were carried out by quickly cooling a liquid to
temperatures much below its freezing temperature and then determining
the time until the first signs of solidification appear.(57, 59�63) This is a
straightforward method but has the disadvantage that it only works at
deep undercoolings (in order to have observable nucleation events). More
recent studies use biasing techniques, such as umbrella sampling, in order
to sample frequently configurations with a large free energy (such as occur
near the top of the nucleation barrier), to circumvent this difficulty. For
example, ten Wolde et al.(65) used umbrella sampling to determine the
nucleation barrier for a Lennard�Jones system at moderate undercooling
and calculated the rate at which the barrier is crossed by MD. They found
that although the Lennard�Jones system studied had a stable fee phase
below the melting curve, the precritical nuclei were primarily a metastable
bcc phase which transformed to fcc before the critical nucleus was reached.
They also found that the density profile falls off more rapidly in the inter-
face than that of the structural order parameter, as predicted by Harrowell
and Oxtoby.(42) In addition, the kinetic prefactor was approximately two
orders of magnitude larger than predicted by classical nucleation theory at
the moderate undercoatings studied. The possibility of the formation of a
phase from the melt that is not the most stable, but rather the phase closest
in free energy to the liquid phase, is known as the Ostwald ``step rule''(90)

and has been the subject of considerable theoretical development.(77, 70)

(Earlier, interesting simulations of crystal growth of a fcc crystal in contact
with its melt were carried out for a Lennard�Jones system by Broughton
et al.(85, 89))

v Bartell and collaborators have carried out experimental and MD
studies on a variety of molecular clusters.(23�29, 6, 7) The MD studies were
motivated by the observation of both freezing and certain solid�solid tran-
sitions in electron diffraction measurements of deeply undercooled, small
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molecular clusters in a supersonic beam. Since the clusters were small,
the simulations did not involve biasing but rather were straightforward
studies of small clusters at deep undercooling. Experimental observations
of freezing in liquid clusters have been made for carbon tetrachloride,
cycloheptane, ammonia, water and a variety of other systems.(7) Typical
simulations treated the molecules as rigid polyhedra (e.g., Se�F octahedra)
with pairwise additive Lennard�Jones potential interactions and ranged in
size from about 100 to 500 molecules. Simulations of freezing transitions
have been carried out for several systems, including molten salt and
chalcogen hexafluorides (SF6 , SeF6 and TeF6). clusters. In addition,
studies of solid�solid transitions (from one structural phase to another)
have been carried out for several systems, including t-butyl chloride and a
series of hexafluorides. In spite of the relative simplicity of the Lennard-
�Jones potentials for the various molecules studied, relatively good results
were obtained for the various phase transitions. Recent reviews of this
work are contained in refs. 6 and 7.

v The nature of the critical droplet for strongly polar fluids such as
acetonotrile has been a subject of some interest.(93�95) In order to clarify
this, a recent simulation of the liquid�gas transition was carried out(67) for
a Stockmayer model, for which the potential is a Lennard�Jones 6�12
interaction plus a dipole�dipole interaction. The simulation showed that
homogeneous gas�liquid nucleation is initiated by chain-like clusters.
Beyond a certain size, the clusters condense and form compact droplets.
The interface of these droplets differs significantly from planar interfaces,
however, due to the existence of chains. The existence of the chain-like
precritical nuclei is significant, in that it affects the nucleation barrier.
It was shown that classical nucleation theory underestimates the size of the
critical droplet and the magnitude of the nucleation barrier.

v Solidification of supercooled eutectic liquids provides rich examples
of nucleation and spinodal decomposition phenomena. These have been
studied via simulations of nonlinear Langevin equations for isothermal
solidification(81) and nonisothermal solidification.(82)

v ten Wolde and Frenkel(66) studied crystal nucleation in a model of
a colloidal system which has a metastable vapor�liquid critical point. They
found for supercoolings far from this metastable critical point, the critical
droplet was classical, with its crystalline order comparable to the stable
bulk crystal. However, for supercoolings close to the metastable critical
point the critical droplet was disordered. They suggested that the minimum
crystal nucleation barrier (and optimal crystal growth rate) corresponded
to this nonclassical critical droplet. A density functional study of this
phenomena has subsequently been carried out, (36) to further elucidate the

918 Gunton



role of a metastable critical point in crystal nucleation. This showed signifi-
cant increases in nucleation rates near this critical point, which would have
major consequences for the nucleation of colloids and proteins from solution.

v In many systems long range interactions, such as elastic interactions
in solids, play an important role in nucleation and growth. A preliminary
step toward the study of such phenomena was taken through the simula-
tion of nucleation in a Langevin model with non-local interactions.(84)

8. SUBCRITICAL BUBBLES AND THE ELECTROWEAK
TRANSITION

The adiabatic expansion of the early universe and its concommitant
cooling is thought to involve first order phase transitions, such as the elec-
troweak transition. The kinetics of such transitions and in particular that
of homogeneous nucleation has been a subject of considerable research.
In particular, Gleiser and collaborators(92, 91) have investigated the effects
of large amplitude fluctuations which play an important role in weak first
order transitions. The standard field theoretic approach to homogeneous
nucleation is strictly applicable to strong first order phase transitions, in
which there is a large barrier between the metastable and stable phases.
In this case, the large barrier suppresses large amplitude thermal fluctua-
tions of the order parameter and one can regard the initial metastable state
as homogeneous, in that only very small amplitude fluctuations occur.
In weak first order phase transitions, on the other hand, such as the
isotropic to nematic transition in certain liquid crystals, large amplitude
fluctuations of the nematic phase can occur. Indeed, they have been
observed above the phase transition temperature. As a consequence, it
would seem natural that in order to develop a theory for weak first order
transitions, one should expand around an inhomogeneous background
which includes large amplitude fluctuations. Attempts to achieve this have
been carried out in recent years both above and below the phase transition
temperature Tc . Initial work treated the equilibrium distribution of so-
called subcritical bubbles of the broken symmetric phase within the sym-
metric phase at temperatures above Tc . A kinetic equation for the number
density of these sub-critical fluctuations was derived and solved analyti-
cally, using different mechanisms for the destruction of these bubbles.(92)

A later work(91) argued that the subcritical fluctuations provide an addi-
tional free energy-density in the system and hence change the free energy
barrier to nucleation below Tc . That is, these subcritical fluctuations renor-
malize the original Cahn�Hilliard free energy functional. This results in a
renormalized free energy barrier for the formation of a critical size bubble
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and hence a change in the nucleation rate as compared with one based on
the original free energy functional. These ideas were implemented in a
study of the model in two dimensions, in which a renormalized free energy
functional was obtained, using an approximate form for the distribution
function and free energy for these bubbles. The predicted nucleation rate
was shown to be in reasonable agreement with numerical simulations of the
model. Although this is interesting work, it is difficult to judge its validity.

9. MISCELLANEOUS

There are several important topics currently under investigation which
have not been discussed here. Among these are the following:

v The classical cluster approach to nucleation in the gas�liquid transi-
tion has been a subject of considerable discussion in recent decades, dating
back to work of Lothe and Pound(96, 97) who argued that classical theory
neglected significant contributions from translational and rotational
degrees of freedom of the critical droplet. An apparent resolution of such
issues has been made recently by Reiss et al.(3)

v Nucleation and growth. Although homogeneous nucleation in itself
is a subject of intrinsic importance, a full understanding of the dynamics of
decay of a metastable state involves both nucleation and growth. Droplet
growth depends on the particular dynamics which govern the system, such
as whether the order parameter is conserved or nonconserved, whether
hydrodynamic modes are important, etc. A recent theory of nucleation and
growth for phase separating systems for which droplet growth proceeds by
the Lifshitz�Slyzov diffusion mechanism is given in refs. 86 and 87, which
also contains a summary of earlier work on this subject.

v Atmospheric nucleation. Important examples of homogeneous and
heterogeneous nucleation occur in the earth's atmosphere. A summary of
some recent advances in this field is given in ref. 8.

v Binary nucleation. Although classical nucleation theory gives a
qualitatively correct description of condensation in simple fluids, it can give
rise to the unphysical prediction of negative numbers of particles in the
critical droplet in the case of binary fluids.(1) Density functional theory can
avoid such difficulties and has provided useful information on the critical
droplet profile.(8, 1)

v Amphiphilic molecules. A particularly interesting application of
nucleation system is the case in which two incompatible systems are
brought together by means of a third, amphiphilic component. One such
system includes immiscible water and nonane, with butanol as the
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amphiphilic molecule which acts as a surfactant. Density functional theory
has been useful in clarifying the composition of the critical ternary
droplet.(1, 37)
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